DITERPENE CHEMISTRY—VI1

SeO₂/H₂O₂ OXIDATIONS OF EXOCYCLIC OLEFINS

M. J. FRANCIS, P. K. GRANT,* K. S. LOW and R. T. WEAVERS Department of Chemistry, University of Otago, Dunedin, New Zealand

(Received in the UK 30 June 1975; Accepted for publication 14 August 1975)

Abstract—Unlike endocyclic olefins the major product from the SeO_2/H_2O_2 oxidation of exocyclic olefins is the same allylic alcohol as from the uncatalysed oxidation. Minor products derived from epoxide intermediates were investigated. The use of SeO_2 as an allylic oxidant for olefins has been extensively investigated, the functionality of the product being to a degree solvent dependent. Although the earlier mechanism of Guillemonat' is incorrect, his rules for the prediction of the position of oxidation still remain valid. A survey by Tratchenburg's of the current position in SeO_2 oxidation postulates allylic oxidation as proceeding through the intermediacy of an oxaselenocyclobutane to a selenite ester which is solvated by competitive unimolecular (S_N1) and bimolecular (S_N2 ') processes (Scheme 1).

Scheme 1.

Epoxides

Metal oxide catalysed hydrogen peroxide oxidation is known as an effective method4 for the hydroxylation of olefins. Whether the product is the cis or trans diol depends on the choice of metal oxide catalyst, a wide range of which have been investigated. Using selenium dioxide as catalyst gave trans diols and product analyses suggested the intermediacy of epoxide moieties, although in the first reported oxidations no epoxides were isolated. Tanaka⁵ later reported the isolation of epoxides exclusively (independent of solvent or water content) in an investigation of 8- and 12-membered cyclic olefins. The formation of diols, attributed to the hydrolytic opening of the oxirane ring, was dependent on steric hindrance and internal strain. In view of the isolation of epoxides and epoxide ring opening products, together with the reported Baeyer-Villiger oxygen insertion reactions on ketones, the presence of an oxidising species having a peroxy acid function, peroxyselenous acid, was postulated.³

Few examples of the selenium dioxide/hydrogen peroxide oxidation of terminal exocyclic olefins have been reported; α-pinene gave the allylic alcohol as the only reported product.⁶ In this instance the product is the same as the normal (uncatalysed) selenium dioxide oxidation product.

We have investigated the SeO_2/H_2O_2 oxidation of a range of terminal exocyclic methylenes and have established that in contrast to endocyclic olefins the addition of H_2O_2 to the conventional SeO_2 allylic oxidation does not alter the nature of the major oxidation products which are still those predicted by the Tratchenburg mechanism. Additional minor products were isolated which can be accounted for by epoxidation after allylic oxidation followed by neighbouring group participation. Although a simple epoxide product was isolated for one substrate no diol products from epoxide openings were detected from any of the substrates investigated.

The alkene system most extensively examined was the 8(17)-exocyclic methylene of various labdane derivatives. In all SeO₂ oxidations of this olefinic system the major product was the allylic 7α -alcohol. The orientation of the OH group was unequivocally established by the unusually low-field signal of the 7β carbinol proton which, being coplanar with the exocyclic double bond, was extensively deshielded.

14,15 - Dinorlabd - 8(17) - ene (1). SeO₂/H₂O₂ oxidation gave 14,15 - dinorlabd - 8(17) - en - 7α - ol (2) together with three isomeric minor products, all $C_{18}H_{32}O_2$ epoxides. The first of these was established as 8,17 - epoxy - 14,15 - dinorlabdan - 7α - ol (3) by its synthesis from the allylic alcohol product (2) by epoxidation. The remaining two epoxides possessed spectral data (Table 1) consistent with their formulation as the isomers 8,9 - epoxy - 14,15 - dinorlabdan - 17 - ol (4) and $8\beta,9\beta$ - epoxy - 14,15 - dinorlabdan - 17 - ol (5).

The isomer with the C-17 protons at lowest field was assigned as the β -epoxide since models show that the C-17 hydroxymethyl group is more axial in this isomer. In addition the C-10 Me group was at lower field being closer to the epoxidic oxygen, although it is to be noted that an α -epoxide, $\alpha\beta$ to an angular Me produces a large shift in that Me signal.⁷ Further, the C-4 β Me appeared at higher

Table 1. PMR data for 8,9-epoxides and reduction products

	Ring A Methyls							
	108	48	4 a	C-17 protons				
8.9- Epoxy-14,15-dinorlabdan- 17-ol (4)	1.03	0.81	0.83	3,52				
86,96-Epoxy-14,15-dinorlabdan- 17-o1 (5)	1.06	0.78	0.84	3.62				
14,15-Dinor-8α-Labdana-9α,17- diol (7)	0.89	0.83	0.89	4.04, 3.52,J _{AB} 12,J _{BX} 2.2, J _{BX} 1.8				
14,15-Dinorlabdane-88,17-diol (6	0.98	0,85	0.87	3.52, 3.23,J _{AB} 11				

field due to increased shielding of the epoxide ring. Confirmation of these assignments was obtained by LAH reductions; in each case the C-17 OH group enhanced the diaxial opening of the epoxides. The β epoxide (5) gave 14,15 - dinorlabdane - 8β , 17-diol (6) having a low-field C-10 Me signal (δ 0.98) consistent with an 8β OH group while the C-17 protons appeared as an AB system (H_A 3.52, H_B 3.23, J_{AB} 11 Hz), typical of an equatorial hydroxymethyl group. Reduction of the α epoxide (4) gave 14,15 - dinor - 8α - labdane - 9α ,17 - diol (7) in which the C-17 protons appeared as the AB part of an ABX system. The C-10 Me signal (δ 0.89) was consistent with the presence of a 9α -OH grouping.

8(17) - Labden - 13 - ol (8). SeO₂/H₂O₂ oxidation gave two products, the allylic alcohol, 8(17)-labdene- 7α ,13-diol (9) and a compound C₂₀H₃₄O₃ which showed OH (3400 cm⁻¹) and extensive C-O (1104, 1045, 991 cm⁻¹)

absorptions and was identified from spectral and degradative data as 9,13 - epoxylabdane - 8β ,17 - diol (10). The lower than normal C-13 Me signal (δ 1·21) implied an ether linkage to C-13 while the AB system (H_A 3·71, H_B 3·46, J_{AB} 10 Hz) was consistent with an equatorial or axial hydroxymethyl at C-8. The presence of a low-field ring A Me signal (δ 1·08) indicated an 8β -OH and consequently an 8α -hydroxymethyl. Thus the ether was probably attached to C-9.

Acetylation with acetic anhydride/pyridine gave the hydroxy-acetate (11) [3480 cm⁻¹ (OH); 1720, 1232 cm⁻¹ 2.08 (acetate)]. The slightly lower field signal for the equatorial acetoxymethyl (δ H_A 4·22, H_B 4·10, J_{AB} 11 Hz) was consistent with the proposed environment. Treatment of the epoxy diol (10) with lead tetraacetate gave the ketone, 9,13 - epoxy - 17 - norlabdan - 8 - one (12), showing CO absorption at 1719 cm⁻¹. The C-13 Me resonance at δ 1.01 indicated extensive shielding consistent with a cyclic ether holding the side chain in a fixed position. Dreiding models show that such shielding is expected for the proposed structure (12), provided that the normal labdane C-13 stereochemistry has been retained. The octant rule10 predicts a more positive C.E. maximum for 12 than for 13 - acetoxy - 17 - norlabdan - 8 - one (13) where the side chain is not fixed in a positive octant. This is in accord with the observed a values (-42.70 and -65.88 respectively). The structure of the ketone was unequivocally established as 9,13 - epoxy - 17 - norlabdan - 8 - one (12) by its synthesis from 9,13 - epoxy - 8(17) labdene (14), a by-product from the

1:
$$R = H$$
2: $R = OH$
3
4: α epoxide
5: β epoxide
7: $R' = H, R^2 = OH$
7: $R' = OH, R^2 = H$
9 $R' = OH, R^2 = H$
10: $R' = OH, R^2 = CH_1OH$
11: $R' = OH, R^2 = CH_2OH$
12: $R', R' = OH$
12: $R', R' = OH$
13: $R' = OH, R' = OH$
14: $R', R' = OH$
15: $R' = OH, R' = OH$
16: $R' = H, R' = AC$
17: $R' = OH, R' = AC$
18: $R' = H$
19: $R' = OH$
11: $R' = OH, R^2 = CH_2OH$
11: $R' = OH, R^2 = CH_2OH$
12: $R', R' = OH$
13: $R' = OH$
14: $R', R' = OH$
15: $R' = CH_2OH$
16: $R' = OH$
17: $R' = OH$
18: $R' = OH$
19: $R' = OH$
19: $R' = OH$
19: $R' = OH$
10: $R' = OH$
10: $R' = OH$
11: $R' = OH, R' = OH$
12: $R' = OH$
13: $R' = OH$
14: $R' = OH$
15: $R' = OH$
16: $R' = OH$
17: $R' = OH$
18: $R' = OH$
19: $R' = OH$
19: $R' = OH$
10: $R' = OH$
10: $R' = OH$
11: $R' = OH$
11: $R' = OH$
12: $R' = OH$
13: $R' = OH$
14: $R' = OH$
15: $R' = OH$
16: $R' = OH$
17: $R' = OH$
18: $R' = OH$
19: $R' = OH$
19: $R' = OH$
10: $R' = OH$
10: $R' = OH$
10: $R' = OH$
10: $R' = OH$
11: $R' = OH$
12: $R' = OH$
13: $R' = OH$
14: $R' = OH$
15: $R' = OH$
15: $R' = OH$
16: $R' = OH$
17: $R' = OH$
18: $R' = OH$
19: $R' = OH$
19: $R' = OH$
10: $R' = OH$
10: $R' = OH$
10: $R' = OH$
11: $R' = OH$
11: $R' = OH$
12: $R' = OH$
13: $R' = OH$
15: $R' = OH$
15: $R' = OH$
16: $R' = OH$
17: $R' = OH$
18: $R' = OH$
19: $R' = OH$
19: $R' = OH$
10: $R' = OH$
10: $R' = OH$
10: $R' = OH$
10: $R' = OH$
11: $R' = OH$
11: $R' = OH$
12: $R' = OH$
12: $R' = OH$
13: $R' = OH$
14: $R' = OH$
15: $R' = OH$
15: $R' = OH$
16: $R' = OH$
17: $R' = OH$
18: $R' = OH$
19: $R' = OH$
19: $R' = OH$
10: $R' = OH$
11: $R' = OH$
12: $R' = OH$
13: $R' = OH$
14: $R' = OH$
15: $R' = OH$
16: $R' = OH$
16: $R' = OH$
17: $R' = OH$
18: $R' = OH$
19: $R' = OH$
10: $R' = OH$
10: $R' = OH$
10: $R' = OH$
10: $R' = OH$
11: $R' = OH$
11: $R' = OH$
12: $R' = OH$
13: $R' = OH$
14: $R' = OH$
15: $R' = OH$
15: $R' = OH$
16: $R' = OH$
16: $R' = OH$
17: $R' = OH$
18: $R' =$

bromination/hydrolysis¹¹ of 8(17) - labden - 13 - ol (8). Treatment of the epoxy-alkene with osmic acid in pyridine gave 9,13 - epoxylabdane - 8,17 - diol (15) which was cleaved with tetraacetate to 9.13 - epoxy - 17 norlabdan - 8 - one (13) identical to that previously obtained. As the SeO₂/H₂O₂ product was different from the 8α , 17-diol (15) yet cleaved to the same ketone it must be the C-8 epimer, 9.13 - epoxylabdane - $8\beta.17$ - diol (10). This product is derived through the intermediacy of the B-epoxide corresponding to 5 which undergoes nucleophilic attack by the suitably placed C-13 OH group. The corresponding oxidation of 13 - acetoxy - 8(17) labdane (16) where the C-13 OH group is protected from participation gave only the allylic alcohol, 13 - acetoxy -8(17) - labdan - 7α - ol (17).

8(17),14 - Labdadien - 13 - ol (18). SeO_2/H_2O_2 oxidation gave two products. The allylic alcohol, 8(17),14 labdadiene - 7α , 13 - diol (19) obtained was identical in all respects with that from Dacrydium kirkii.12 The fact that the optical rotations were the same established conclusively that the naturally occurring compound has the normal labdane C-13 stereochemistry. The other product was the epoxy diol, 9,13 - epoxy - 14 - labdene - $8\beta,17$ - diol (20), analogous to 10. Despite considerable effort the epoxy diol (21) corresponding to nucleophilic opening of the α -epoxide by the C-13 OH could not be detected.

It is significant that no product derived from an $8\alpha,9\alpha$ -epoxide was isolated from the oxidation of an olefin containing an oxygen function at C-13. It is possible that H-bonding to the peracid species directs epoxidation to the β -face.

14.15 - Dinorlabd - 8(17) - en - 13 - one (22), SeO₂/H₂O₂oxidation gave two products, the major one again being the allylic alcohol, 7α - hydroxy - 14.15 - dinorlabd - 8(17) - en - 13 - one (23). The second product, C₁₈H₃₀O₃ showed

OH absorption (3420 cm⁻¹) and extensive C-O (1070, 1052, 1020 cm⁻¹) absorption. The Me signal at δ 1.44 was characteristic of a CH₂-C-O moiety as in the intra-

molecular ketal (24) and a low-field ring A Me signal (δ 1.05) indicated an 8B oxygen function. The magnitude of J_{AB} (11 Hz) for the C-17 methylene protons eliminated the possibility of the usual 5-membered ketal system. It was shown to be a tertiary alcohol since it did not acetylate with acetic anhydride/pyridine and showed no other low-field carbinol proton signals so that the C-17 methylene must be involved in a 6- or larger-membered ring system. This data, together with previous product analyses lead to its formulation as the intramolecular ketal, 9,13; 13,17 - diepoxy - 14,15 - dinorlabdan - 8β - ol (25) formed via the intermediacy of an 8β , 9β - epoxy - 17 hydroxymethyl derivative (analogous to 5) with concomittant ketalisation. An 8α , 9α -epoxide would give rise to the normal 5-membered ketal system. Attempts to dehydrate the hydroxy ketal (25) using thionyl chloride/pyridine gave the chloro derivative (26).

1 - Methylene - 8,13 - epoxylabdane (27). An epoxide (28), identical to the epoxide prepared by treatment of the alkene (27) with m-chloroperbenzoic acid, was the sole product; no allylic alcohol was detected. The epoxide was assigned a 1\(\beta\),1'-configuration since the downfield spinpair of the epoxidic AB system exhibited large long-range coupling (J 2.2 Hz), consistent with a pseudo-axial methylene group.¹³ Epoxidation of the alkene (27) from the β face is also consistent with the hydride reduction of 8,13 - epoxylabdan - 1 - one (29) which gives the α (axial) and β(equatorial) alcohols in a 9:1 ratio. 4 LAH reduction of the epoxide gave 1α - methyl - 8,13 - epoxylabdan - 1β ol (31). This assignment was confirmed by a comparison

$$R^{1}_{m_{1}, R^{2}} = CH_{2}$$
27: $R^{1}, R^{2} = CH_{2}$

29: R^1 , $R^2 = -0$

30: $R^1 = R^2 = H$

31: $R^1 = CH_3$, $R^2 = OH$

32: $R^1 = H, R^2 = OH$

33: $R^1 = OH, R^2 = H$

34: $R^1 = OH$, $R^2 = CH$

28

$$\mathbb{R}^2$$

35: $R^1, R^2 = -CH$

36: $R^1, R^2 = -0$

44: $R^1 = OH, R^2 = H$

45: $R^1 = OAc, R^2 = H$

37: $R^1 = H$, $R^2 = CH_2OH$ 47: $R^1 = CH_2OH$, $R^2 = H$

48: $R^1 = CH_2OCH_3$, $R^2 = H$

51: $R^1 = CHO, R^2 = H$

38: $R^1, R^2 = -CH_2$

39: $R^1, R^2 = -0$

50: $R^1 = OH$, $R^2 = CH_2OH$

40: $R^1 = CH_2$, $R^2 = H$

41: $R^1 = CH_2$, $R^2 = Ac$ 43: $R^1 = O$, $R^2 = Ac$

52: R = H54: R = OH

of the ring A Me signals in pyridine with those of the epimeric 8,13 - epoxylabdan - 1 - ols (32 and 33) (Table 2).

Methyl magnesium iodide on 8,13 - epoxylabdan - 1 - one (29) gave 1β - methyl - 8,13 - epoxylabdan - 1α - ol (34) and 1α - methyl - 8,13 - epoxylabdan - 1β - ol (31) in a 5:2 ratio, the latter product being identical to the LAH reduction product of the epoxide (28). Methyl lithium on the ketone (29) gave only 1β - methyl - 8,13 - epoxylabdan - 1α - ol (34).

Table 2. PMR data for 1-substituted 8,13-epoxylabdane derivatives (C_*D_*N)

	Methyl signals								
	10в	46	4 a	C-14	C-1	138	86		
8,13-Epoxylabdane (30)	0.72	0.76	0,82	0.89(t)		1.16	1.24		
lo-Methyl-8,13-apoxylabdan-	0.81	0.84	1.11	0.91(t)	1,41	1.17	1.34		
ls-ol (31)									
8,13-Epoxylabdan-18-01 (32)	0.79	0.81	1.00	0.91(t)		1.18	1.32		
8,13-Epoxylabdan-lo-ol (33)	0.79	0.82	0.88	0.87(t)		1.20	1.33		
ls-Methyl-8,13-epoxylabdan-	0.78	0.85	0.85	0.84(t)	1.43	1.15	1.32		

- 3 Methylene 8,13 epoxylabdane (35). The rearranged allylic alcohol, 3 hydroxymethyl 8,13 epoxylabd 2 ene (37) was the sole product. The C-2 olefinic proton appeared as a doublet since models show that the dihedral angle $(2,1\alpha)$ is close to 90°.
- 2 Methylene 8,13 epoxylabdane (38). SeO₂/H₂O₂ oxidation gave four products. Although not the major component the allylic alcohol, 2 - methylene - 8,13 epoxylabdan - 3α - ol (40) was isolated. That the OH group was at C-3 and not at the alternative allylic position, C-1, was established by conversion to the acetate (41) which was hydroxylated with osmic acid in pyridine to the diol acetate (42). Periodate cleavage of 42 gave the ketoacetate, 3α - acetoxy - 8,13 - epoxylabdan - 2 - one (43) identical with a sample prepared by the acetoxylation of 8.13 - epoxylabdan - 2 - one (39) with lead tetraacetate. This interconversion also established the α orientation of the OH group in 40 which was initially in doubt when the C-3 carbinol proton appeared at markedly higher field (δ 3.61) than usual (cf 8(17) - labdene - 7α , 13 diol, 9 at δ 5.03). Ring A Me signals were in good agreement with those predicted from addivity values and thus eliminated the possibility that ring A existed in a twist conformation in which the 3β proton was removed from the deshielding zone of the exocyclic methylene at C-2. In contrast the allylic acetate (41) showed the expected deshielding of the carbinol proton (δ 5·12) (cf 7 α - acetoxy - 8(17) - labden - 13 - ol, 46 at δ 5.40).

The major product of the oxidation, $C_{21}H_{36}O_2$, showed OH absorption (3400 cm⁻¹) and was identified as the unsaturated alcohol, 2-hydroxymethyl-8,13-epoxylabd-2 - ene (47) from spectroscopic data. The C-3 olefinic proton (δ 5·37) was long-range coupled to the 1α -proton ($\theta_{31/\alpha}$ 90°). The third product, $C_{21}H_{36}O_3$, was identified as the epoxy alcohol, 2β - hydroxymethyl - 2α ,3 α ;8,13 - diepoxylabdane (49) and its structure confirmed by epoxidation of the previously isolated unsaturated alcohol (47). The direction of opening of this epoxide on LAH reduction was controlled by the β -hydroxymethyl group and the abnormal opening product obtained, 2β -

hydroxymethyl - 8,13 - epoxylabdan - 2α - ol (50), was cleaved by periodate to 8,13 - epoxylabdan - 2 - one (39). The fourth product, $C_{21}H_{34}O_2$ showed aldehyde absorption (2710, 1695 cm⁻¹, δ 9·44) and was formulated as 2 - formyl - 8,13 - epoxylabd - 2 - ene (51). The C-3 olefinic proton was long range coupled ($J_{3/\alpha}$ 3 Hz) to the 1α -proton. The UV absorption maximum at 231 nm was consistent with this structure.

 SeO_2 oxidation of 8(17),14 - labdadien - 13 - ol (18) gave allylic alcohol 8(17),14 - labdadiene - 7α ,13 - ol (19) in 54% yield but none of the other products which were isolated when using the SeO_2/H_2O_2 oxidant.

 SeO_2/H_2O_2 oxidation of the endocyclic olefin 8,13 - epoxylabd - 2 - ene (52) was in accord with the findings of Tanaka⁵ and gave only 2α ,3 α ;8,13 - diepoxylabdane (53), no hydroxylated product or allylic alcohol being detected. Oxidation of the olefin (52) with SeO_2 alone gave a good yield of the allylic alcohol, 8,13-epoxylabd-2-en-1-ol (54).

The Tratchenburg mechanism as applied to the oxidation of the 8(17)-exocyclic methylene compounds is shown in Scheme 1. Preferential abstraction of the proton from the allylic methylene (C-7) rather than from the allylic methine (C-9) is in accord with the observations of Guillemonat. An experiment using 7β - deuterio - 14,15 - dinorlabd - 8(17) - ene (1 with 7β D) yielded 7β - deuterio - 14,15 - dinorlabd - 8(17) - en - 7α - ol (2 with 7β D), showing that the initial hydrogen abstraction occurs from the α -face.

The tetrasubstituted olefinic selenite esters undergo S_N1 hydrolysis whereas the trisubstituted olefinic selenite esters predominantly undergo S_N2' hydrolysis since the stereochemical requirements are more readily attained. The greater reactivity of the more highly substituted double bond to electrophilic attack accounts for the greater predominance of products derived from the epoxidation of the Δ^8 alcohols as compared to those from the disubstituted double bonds. The oxidation of 1 methylene - 8,13 - epoxylabdane (28) is anomalous. The isolation, in low yield, of only an epoxide and no product derived from the intermediate selenite ester suggests steric hindrance to its formation from the C-11 methylene.

EXPERIMENTAL†

Selenium dioxide on 14,15 - dinorlabd - 8(17) - ene (1)

Compound 1 (5·4 g) in dioxan (100 ml) was stirred with SeO_2 (2·5 g) and H_2O_2 (20 ml, 30%) at r.t. for $2\frac{1}{2}$ days. Work up by dilution and ether extraction gave crude material (6·1 g). Chromatography (180 g alumina) gave:

- (i) 20% EtOAc/Hexane—14,15 dinorlabd 8(17) en 7α ol (2) (2·9 g) distilled 74°/0·03 mm., m.p. 43–45°; $\nu_{\rm max}$ 3340(OH); 3080, 1635, 1408, 895(C=CH₂); 1198, 1163, 1140, 1117, 1080, 1045, 1033, 994(CO) cm⁻¹; PMR: Me's at δ 0·65, 0·80, 0·88, 0·93 (tr, J 7 Hz); C=CH₂ 4·35, 4·62; CHOH as a multiplet 5·02 (W/2 3 Hz). (Found: C, 81·5; H, 12·1. C₁₈H₃₂O requires: C, 81·8; H, 12·2%).
- (ii) EtOAc—A mixture which further resolved on PLC $(6 \times 30\% \text{ ether/hexane})$ into:
- (a) The upper band—8(17) epoxy 14.15 dinorlabdan 7α ol (3) (0·2g), distilled 85°/0·02 mm, m.p. 69-70°; $\nu_{\rm max}$ 3400 (OH); 3030, 1480, 963, 943, 914, 886, 842, 811, 770, 720 (epoxide); 1193, 1105, 1054, 1034 (CO) cm⁻¹; PMR: Me's at δ 0·78, 0·82, 0·85 (tr, J 7 Hz), 0·91; epoxide protons as an AB system H_A 2·83, H_B 2·54 (J_{AB} 4 Hz); CHOH as a multiplet 3·44 (W/2 4Hz). (Found: C, 77·1; H, 11·5%).
- (b) The middle band—8,9 epoxy 14,15 dinorlabdan 17 ol (4) (0·5 g), distilled 90°/0·2 mm; ν_{max} 3435 (OH); 970, 940, 910, 877, 860, 838, 814, 770, 730, 690, 662 (epoxide); 1170, 1110, 1038 cm⁻¹; PMR: Me's at δ 0·81, 0·83, 0·88 (tr, J 7 Hz), 1·03; C-17 protons

[†]For general details see Part 1.16

3.52. (Found: C, 76.9; H, 11.5. C₁₈H₃₂O₂ requires: C, 77.1; H, 11.5%).

(c) The lower band— 8β ,9 β - epoxy - 14,15 - dinorlabdan - 17 - ol (5) (0·3 g), distilled 90°/0·02 mm. ν_{max} 3435 (OH); 974, 820, 889, 877, 862, 839, 818, 724, 694 (epoxide); 1160, 1096, 1036, 1000, 974 (CO) cm⁻¹; PMR: Me's at δ 0·78, 0·84, 0·88 (tr. 1.7 Hz), 1·06; C-17 protons 3·64. (Found: C, $77\cdot3$; H, 11·5. $C_{18}H_{32}O_{2}$ requires: C, $77\cdot1$; H, 11·5%).

Selenium dioxide on 7β - deuterio - 14,15 - dinorlabd - 8(17) - ene (1 with $7\beta D$)

Repetition of the above experiment using 1'3 with 7β D gave 2 with 7β D. PMR. showed no multiplet at δ 5.02; m/e 265 (M*).

14,15 - Dinor - 8α - labdane - 9,17 - diol (7). Compound 4 (450 mg) in dry ether (15 ml) was refluxed with excess LAH for 6 hr. Excess LAH was destroyed with wet ether and then water, the complex hydrolysed with H_2SO_4 (10 ml, 10%) and the mixture ether extracted. Removal of solvent followed by PLC, (70% ether/hexane) gave 14,15 - dinor - 8α - labdane - 9,17 - diol 7 (408 mg), sublimed $100^\circ/0$ -015 mm., m.p. $128-129^\circ$; ν_{max} 3300 (OH); 1165, 1112, 1068, 1045, 1013 (CO) cm⁻¹; PMR: Me's at δ 0-83, 0-89, 0-89, 0-90 (tr, J 7 Hz); C-17 protons as the AB portion of an ABX system H_A 4-04, H_B 3-52 (Apparent coupling constants, J_{AB} 12, J_{AX} 2-2, J_{BX} 1-8 Hz). (Found: C, $76\cdot7$; H, $12\cdot1$. $C_{18}H_{36}O_2$ requires: C, $76\cdot5$; H, $12\cdot1\%$).

14,15 - Dinorlabdane - 8β ,17 - diol (6). Compound 5 (180 mg) in dry ether (10 ml) was refluxed with excess LAH for 6 hr. Work up as for 7 followed by PLC (70% ether/hexane) gave 14,15 - dinorlabdane - 8β ,17 - diol 6 (160 mg), sublimed $96^{\circ}/0.02$ mm., n., 123-124°. ν_{max} 3395 (OH); 1179, 1053, 1040 (CO) cm⁻¹; PMR: Me's at δ 0.85, 0.87, 0.88 (tr., J 7 Hz), 0.98; C-17 protons as an AB system H_A 3.52, H_B 3.23 (J_{AB} 11 Hz). (Found: C, 76.8; H, 12·1. C₁₈H₃₆O₂ requires: C, 76.5; H, 12·1%).

Selenium dioxide/hydrogen peroxide on 8(17) - labden - 13 - ol (8) A soln of 8 (15 g) in dioxan (70 ml) with H₂O₂ (25 ml, 30%) and SeO₂ (2 g) was stirred et at for 24 br. The product (14.9 g) was

SeO₂ (2 g) was stirred at r.t. for 24 hr. The product (14.9 g) was absorbed onto alumina (1000 g deactivated with 80 ml water). Elution gave:

(i) 45% ether/hexane—9,13 - epoxylabdane - 8β ,17 - diol (10) (1·7 g), distilled 104°/0·015 mm., m.p. 53–56°; ν_{max} 3405 (OH); 1104, 1045, 1001, (CO) cm⁻¹; PMR: methyls at δ 0·83, 0·87, 0·92 (tr, J 7 Hz), 1·08, 1·21; C-17 protons as an AB system H_A 3·71, H_B 3·46 (J_{AB} 10 Hz). (Found: C, 74·4; H, 11·2. C₂₀H₃₆O₃ requires: C, 74·0; H, 11·2%).

(ii) 60% ether/hexane—8(17) - labdene - 7α ,13 - diol 9 (5·1 g), identical (mmp, IR, PMR) with an authentic sample: $^{12}\nu_{max}$ 3320, 3280 (OH); 3080, 1640, 900 (C=CH₂); 1145, 1045, 1030 (CO) cm⁻¹; PMR: Me's at δ 0·68, 0·81, 0·89, 0·89 (tr, J 7 Hz), 1·15: C=CH₂ 4·38, 4·68; CḤOH 5·04 (W/2 3 Hz).

17 - Acetoxy - 9,13 - epoxylabdan - 8β · ol (11). Compound 10 (80 mg) was treated for 24 hr at r.t. with dry pyridine (1·5 ml) and Ac₂O (1·5 ml). Dilution with water, ether extraction, washing with dil HCl, sat NaHCO₃ and water and removal of solvent followed by PLC (65% ether/hexane) gave 17 - acetoxy - 9,13 - epoxy labdan - 8β - ol 11 (80 mg), distilled $90^{\circ}/0.02$ mm., m.p. 4-84·5°; ν_{max} 3480 (OH); 1720, 1232 (acetate); 1185, 1130, 1099, 1049, 990 (CO) cm ¹; PMR: Me's at δ 0·82, 0·86 (tr, J 7 Hz), 0·88, 1·09, 1·25; acetate methyl 2·08; C-17 protons as an AB system H_A 4·22, H_B 4·10 (J_{AR} 11 Hz). (Found: C, 72·1; H, 10·6. C₂₂H_{3R}O₄ requires: C, 72·1; H, 10·5%).

9,13 - Epoxy - 17 - norlabdan - 8 - one (12). To a stirred soln of 10 (90 mg) in dry benzene (10 ml) was added lead tetraacetate (150 mg) in dry benzene (15 ml) over a period of $\frac{1}{2}$ hr. Stirring was continued at r.t. for 1 hr. Excess Pb(OAc), was destroyed by the addition of ethane diol (0.5 ml) and filtration and evaporation of the solvent gave 9.13 - epoxy - 17 - norlabdan - 8 - one 12 (85 mg), distilled 65°/0-03 mm. ν_{max} 1719 (C=O); 1131, 1110, 1059, 1022 (CO) cm⁻¹; PMR: Me's at δ 0.72, 0.82, 0.92 (tr, J 7 Hz), 0.95, 1.01; perturbed methylene 2·10-2·60. CD (c, 0·165; MeOH) [θ]₂₆₀ O; $\{\theta\}_{300}$ - 3500 (138 mm); $\{\theta\}_{310}$ O. (Found: C, 78·2; H, 11·1. C₁₈H₃₂O₂ requires: C, 78·0; H, 11·0%).

9,13 - Epoxylabdane - 8,17 - diol (15). To OsO₄ (100 mg) in pyridine (20 ml) was added 14¹¹ (100 mg) in pyridine (8 ml). After stirring at r.t. for 24 hr, sodium metabisulphite (3 g) in water (10 ml) was added and stirring continued for a further 24 hr. The mixture was diluted with water (300 ml), extracted with CHCl, (3 × 70 ml) which was washed with 2M HCl, sat NaHCO₃ and water. Drying and evaporation of the solvent followed by PLC (70% ether/hexane) gave 9,13 - epoxylabdan - 8,13 diol 15 (45 mg), distilled 90°/0·015 mm; $\nu_{\rm max}$ 3635 (OH); 1137, 1108, 1089, 1054, 1032, 1020, 984 (CO) cm⁻¹; PMR: Me's at δ 0·77, 0·81, 0·87, 0·97 (tr, J. 7 Hz), 1·25; C-17 protons as an AB system H_A 3·72, H_B 3·43 (J_{AB} 10 Hz). (Found: 74·1; H, 11·1. C₂₀H₃₆O₂ requires: C, 74·0; H, 11·2%).

Lead tetraacetate on 9.13 - epoxylabdane - 8,17 - diol (15). Compound 15 (19 mg) in dry benzene (5 mł) was cleaved with lead tetraacetate (25 ml) in dry benzene (10 ml) as described for 10. Work up gave 9,13 - epoxy - 17 - norlabdan - 8 - one 12 (17 mg), identical (IR, PMR) with that obtained from cleavage of 10.

Selenium dioxide|hydrogen peroxide on 8(17),14-labdadien-13ol (18)

A soln of 18 (10 g) in dioxan (100 ml) was stirred at r.t. with $\rm H_2O_2$ (25 ml, 30%) and SeO₂ (3 g) for 24 hr. The product (9·8 g) was adsorbed onto alumina (500 g deactivated with 40 ml water). Elution gave:

(i) 40% ether/hexane—9,13 - Epoxy - 14 - labdene - 8 β ,17 - diol 20 (2·1 g), distilled 100°/0·1 mm., m.p. 100–101°; ν_{max} 3370 (OH); 3080, 1630, 1400, 980, 902 (CH=CH₂); 3080. 1630, 870 (C=CH₂); 1170, 1140, 1090, 1070, 1033, 980 (CO) cm⁻¹; PMR: Me's at δ 0·82, 0·88, 1·09, 1·31; C-17 protons as an AB system H_A 3·77, H_B 3·46 (J_{AB} 10 Hz); CH=CH₂ as an ABX system H_A 6·06, H_A 5·07, H_B 4·91 (J_{AX} 17·5, J_{AB} 1·5, J_{BX} 11 Hz). (Found: C, 74·7; H, 10·9. C₂₀H₃₄O₃ requires: C, 74·5; H, 10·6%).

(ii) 80% E/H—8(17),14 - labdadiene - 7α ,13 - diol 19 (4.5 g), (identical m.m.p., IR, PMR) with the naturally occurring compound, $[\alpha]_{17}^{25} + 17^{\circ}$; ν_{max} 3320, 3260, (OH); 3085, 1640, 1410, 998, 913 (CH=CH₂); 3080, 1640, 900(C=CH₂); 1120, 1105, 1060, 1030 (CO) cm⁻¹; PMR: Me's at δ 0.65, 0.79, 0.87, 1.26; C=CH₂ 4.35, 4.63; CHOH 5.01; CH=CH₂ as an ABX system H_X 5.90, H_A 5.20, H_B 5.04 (J_{Ax} 17, J_{AB} 1.5, J_{BX} 10.5 H2). (Found: C, 78.3; H, 11.2. C₂₀H₃₄O₂ requires: C, 78.3; H, 11.2%).

Selenium dioxide/hydrogen peroxide on 13 - acetoxy - 8(17) - labdene (16)

A soln of 16 (2 g) in dioxan (20 ml) with H_2O_2 (10 ml, 30%) and SeO₂ (0·5 g) was stirred at r.t. for 4 days. The product (1·9 g) was adsorbed onto alumina (100 g). Elution with 25% ether/hexane gave 13 - acetoxy - 8(17) - labden - 7α - ol 17 (0·7 g), distilled 95°/0·02 mm; ν_{max} 3420 (OH); 1730, 1250 (acetate); 3080, 1640, 895 (C=CH₂); 1126, 1067, 1018, 990 (CO) cm⁻¹; PMR: Me's at 8 0·68, 0·82, 0·86 (tr, J 7 Hz), 0·90, 1·41; acetate methyl 1·98; C=C H_2 4·36, 4·67; CHOH 5·04 (W/2 3 Hz). (Found: C, 75·5; H, 10·8. $C_{22}H_{38}O_{3}$ requires: C, 75·4; H, 10·9%).

Selenium dioxide on 14,15 - dinorlabd - 8(17) - en - 13 - one (22)

Compound 22 (1·2 g) in dioxan (30 ml) was stirred with SeO_2 (0·5 g) and H_2O_2 (3 ml, 30%) at r.t. for 36 hr. NaHCO₃ wash of the crude product (1·26 g) gave a neutral fraction (1·1 g) which was separated by PLC (100% ether).

(i) Upper band—9,13-8 α ,13 - diepoxy - 14,15 - dinorlabdan - 8 β - ol 25 (0·25 g) sublimed 76°/0·04 mm, m.p. 77–78°; $\nu_{\rm max}$ 3420 (OH); 1070, 1052, 1020 (C–O) cm⁻¹; PMR: Me's at δ 0·83, 0·90, 1·05, 1·44; –CH₂O as AB system H $_{\rm A}$ 3·52. H $_{\rm B}$ 3·29 (J $_{\rm AB}$ 11 Hz). (Found: C, 73·6; H, 10·4. C $_{\rm IB}$ H $_{\rm 30}$ O $_{\rm 7}$ requires: C, 73·4; H, 10·3%).

(ii) Lower band— 7α - hydroxy - 14,15 - dinorlabd - 8(17) - en - 13 - one 23 (0·4 g), distilled 68°/0·04 mm; $\nu_{\rm max}$ 3520 (OH), 1705 (>C=O), 3080, 1645, 890 (C=CH₂) cm ¹; PMR: Me's at δ 0·68, 0·79, 0·87, CH₃CO 2·10; C=CH₂ 4·37, 4·58, CHOH as a multiplet 5·05 (W/2 3 Hz). (Found: C, 77·6; H, 10·9. C₁₈H₃₀O₂ requires: C, 77·6; H, 10·9%).

 8β - Chloro - 9,13;8 α ,13 - diepoxylabdane (26). The hydroxy ketal (0·1 g) was reacted with thionyl chloride (4 ml) in redistilled pyridine (20 ml) at r.t. with stirring for 24 hr. Dilution, ether

extraction and washing the ether extract with dil. HCl and then water followed by evaporation of the solvent gave a product which on PLC (50% ether/hexane) gave 8β - chloro - 9,13;8α,13 - diepoxy - 14,15 - dinorlabdane 26 (0.095 g) m.p. 84–85°, sublimed $8^{\circ}/0.05$ m.m.; ν_{max} 1073, 1057, 1030 (C–O); 673 (C–Cl) cm⁻¹; PMR: Me's at δ 0.84, 0.90, 1.14, 1.43; CH₂O as AB system H_A 3.93, H_B 3.53 (J_{AB} 12 Hz) (Found: C, 69.0; H, 9.3; Cl, 11·2. C₁₈H₂₉ClO₂ requires: C, 69·1; H, 9·3; Cl, 11·3%).

1- Methylene -8,13 - epoxylabdane (27). A soln of 29 (0·5 g) and methylene iodide (0·5 ml) in dry ether (10 ml) was added to Mg/Hg amalgam (101 g; 1:100) covered by dry ether (10 ml) and the mixture stirred for 1 hr. The ethereal fraction was decanted and the amalgam washed several times with ether and the combined ether extracts washed with 10% Na₂SO₃ aq. to remove iodine released during the reaction. PLC (20% ether/hexane) gave 1-methylene - 8,13 - epoxylabdane 27 (120 mg) as an oil, distilled 65°/0·04 mm; ν_{max} 3100, 1635, 890 (C=CH₂); 1115, 1034 (C=O) cm⁻¹; PMR: Me's at δ 0·85, 0·91, 0·97, 1·22, 1·36, 0·84 (tr, J 7 Hz); C=CH₂ 4·49, 4·76. (Found: C, 82·9; H, 11·8. C₂₁H₃₆O requires: C, 82·8; H, 11·9%.).

Selenium dioxide/hydrogen peroxide on 1 - methylene - 8,13 - epoxylabdane (27)

Compound 27 (100 mg) in dioxan (10 ml) was stirred with SeO₂ (0.06 g) and H_2O_2 (0.5 ml, 30%) for 48 hr. PLC (30% ether/hexane) gave two bands. The upper band was unchanged 1-methylene-8,13 - epoxylabdane 27 (30 mg). The lower band was 1β ,1';8,13 - diepoxylabdane 28 (20 mg) as an oil, distilled 60°/0·03 mm; ν_{max} 1110, 1085 (C-O); 900, 850 (epoxide) cm '; PMR: Me's at 0.90, 0.90, 1·08, 1·15, 1·30, 0·83 (tr, J 7 Hz); epoxidic protons as an Asystem H_A 2·90, H_B 2·42 (J_{AB} 4 Hz with H_A long-range coupled J 2 Hz). (Found: C, 78·9; H, 11·5. $C_{21}H_{36}O_2$ requires: C, 78·8; H, 11·3%).

Epoxidation of 1 - methylene - 8,13 - epoxylabdane (27). Compound 27 (0·18 g) in CHCl₃ (20 ml) was stirred with m-chloroperbenzoic acid (0·11 g) at r.t. for 15 hr. Dilution, work up with 10% Na₂S₂O₃ to remove excess peracid followed by PLC (1:10 ether/hexane) gave 1β ,1';8,13 - diepoxylabdane 28 (0·12 g) identical to the product from the SeO₂/H₂O₂ oxidation.

Lithium aluminium hydride reduction of epoxide (28). Compound 28 (0·1 g) in dry ether (15 ml) and excess LAH was left at r.t. for 15 hr. Work up as for 7 and PLC (30% ether/hexane) gave 1α - methyl - 8,13 - epoxylabdan - 1β - ol 31 (0·07 g), distilled 87%/0·03 mm; $\nu_{\rm max}$ 3600, 3470 (OH), 1170, 1105, 1050, 1030, 995 (C-O) cm⁻¹; PMR: Me's at δ 0·80, 0·86, 0·94, 1·17, 1·32, 1·32, 0·84 (tr, J 7 Hz); PMR (C,D₃N); Me's at δ 0·81, 0·84, 1·11, 1·17, 1·34, 1·41, 0·91 (tr, J 7 Hz). (Found: C, 78·4; H, 11·7. C₂₁H₃₈O₂ requires: C, 78·2; H, 11·9%).

Methyl magnesium iodide on 8,13 - epoxylabdan - 1 - one (29). Compound 29 (0.4 g) in dry ether (20 ml) was reacted with an ethereal soln of MeMgl prepared from Mg turnings (0.5 g) and redistilled MeI (1.5 ml). The mixture was refluxed for 3 hr and the excess reagent destroyed by the addition of saturated NH₄Cl aq. Ether extraction and removal of solvent gave three bands on PLC (15% ether/hexane)

- (i) The upper band of 8,13 epoxylabdan 1 one 29 (0·165 g), identical to an authentic sample (IR, TLC).
- (ii) The lower band as a mixture of three compounds which on further PLC (30% ether/hexane) gave
- (a) 1β methyl 8,13 epoxylabdan 1α ol 34 (0.05 g) distilled 91°/0·3 mm. crystallized on long standing. $\nu_{\rm max}$ 3600, 3470 (OH), 1160, 1105, 1080, 1030, 995 (CO) cm⁻¹; PMR: Me's at δ 0.77, 0.86, 0.88, 1.13, 1.28, 1.31, 0.83 (tr, J 7 Hz); PMR (C,D,N): Me's at δ 0.78, 0.85, 1.15, 1.31, 1.45, 0.83 (tr, J 7 Hz). (Found: C, 78·0; H, 12·1. C₂₁H₃₈O₂ requires: C, 78·2; H, 11·9%).
- (b) 1α methyl 8,13 epoxylabdan 1β ol 31 (0.02 g) identical (IR, TLC) to the sample prepared from the LAH reduction of epoxide (28).
- (c) Unidentified compound (0.03 g) $\nu_{\rm max}$ 1700 (C=O) cm⁻¹. Methyl lithium on 8,13 epoxylabdan 1 one (29). Compound 29 (0.12 g) in LAH dried ether was reacted with an ethereal soln of MeLi (1.2 ml, 1.4 M) in a N₂ atmosphere for 36 hr. Excess reagent was destroyed by the careful dropwise addition of water. The combined ethereal extracts were washed with Na₂S₂O₃ aq (20 ml;

10%) and then water. Removal of the solvent under vacuum and PLC (50% ether/hexane) of the product gave 1β - methyl - 8,13 - epoxylabdan - 1α - ol 34 (0.09 g) identical (IR, TLC) to the sample prepared above.

3 - Methylene - 8,13 - epoxylabdane (35). A soln of 36 (1·0 g) and CH₂I₂ (1 ml) in dry ether (20 ml) was added to Mg/Hg amalgam (203 g; 3:200) covered by dry ether (10 ml). After stirring for 1 hr and work up as for 27, PLC (6% ether/hexane) gave 3 - methylene - 8,13 - epoxylabdane 35 (150 mg) as an oil, distilled $70^{\circ}/0.04$ mm; ν_{max} 3095, 1635, 885 (C=CH₂); 1100 (C-O) cm⁻¹; PMR: Me's at δ 0.85, 0.86, 1.07, 1·18, 1·28, 0.83 (tr, J. 7 Hz); C=CH₂ 4·64, 4·68. (Found: C, 82·8; H, 12·0. C₂/H₃₀O requires: C, 82·8; H, 11·9%).

Selenium dioxide/hydrogen peroxide on 3 - methylene - 8,13 - epoxylabdane (35)

Compound 35 (120 mg) in dioxane (10 ml) was stirred with SeO₂ (0·07 g) and H₂O₂ (1 ml; 30%) at r.t. for 45 hr. PLC (10% ether/hexane) gave an upper band of unchanged 3 - methylene - 8,13 - epoxylabdane 35 (30 mg) and a lower band, 3 - hydroxymethyl - 8,13 - epoxylabd - 2 - ene 37 (20 mg) m.p. 94–95°, sublimed 80°/0·03 mm; $\nu_{\rm max}$ 3400 (OH); 1110, 1053 (C–O) cm⁻¹; PMR: Me's at δ 0·78, 0·85, 1·04, 1·20, 1·29, 0·84 (tr, J 7 Hz); -CH₂OH as A₂ system 4·14; C=CH 5·66 (d, J 5 Hz). (Found: C, 78·8; H, 11·4. C₂; H_{3e}O₂ requires: C, 78·8; H, 11·3%).

2 - Methylene - 8,13 - epoxylabdane (38). A soln of 39 (6·0 g) and CH₂I₂ (2 ml) in dry ether (25 ml) was added to Mg/Hg amalgam (203 g; 3:200) covered by dry ether (10 ml). The reaction refluxed of its own accord and after $\frac{1}{2}$ hr was worked up as for 27. The crude produce was adsorbed on alumina (100 g) and elution with hexane gave 2 - methylene - 8,13 - epoxylabdane 38 (3·20 g), m.p. 67-68°, sublimed 68°/0·03 mm; ν_{max} 3060, 1645, 870, 865 (C=CH₂); 1115, 1070, 1035, 1000 (C=O) cm⁻¹; PMR: Me's at δ 0·70, 0·73, 0·91, 1·19, 1·26, 0·85 (tr, J 7 Hz); C=CH₂ 4·65, 4·72. (Found: C, 82·9; H, 11·9%).

Selenium dioxide/hydrogen peroxide on 2 - methylene - 8,13 - epoxylabdane (38)

The olefin 38 (1.5 g) in dioxan (50 ml) was stirred with SeO_2 (0.3 g) and H_2O_2 (5 ml, 30%) at r.t. for 48 hr. PLC (30% ether/hexane) gave five compounds.

Band I—(the upper band) (0·13 g) was identified as unchanged 2 - methylene - 8,13 - epoxylabdane (38).

Band II—2 - formyl - 8,13 - epoxylabd - 2 - ene 51 (0.06 g) m.p. 135-136°, sublimed 64°/0.045 mm; λ_{max} 231 nm (ϵ 4650); ν_{max} 1653 (C=C) 2710, 1695 (CHO); 1120, 1078 (C=O) cm ¹; PMR: Me's at δ 0.71, 1.01, 1.10, 1.20, 1.30, 0.85 (tr, J 7 Hz); 1β H as A part of AB system H_{Λ} 2.47 ($J_{\Lambda B}$ 16 Hz); C=CH 6.45 (d, long range coupled $J_{3,16}$ 3 Hz); -CHO 9.44 (s). (Found: C, 79·3; H, 10·85. $C_{21}H_{34}O_{2}$ requires: C, 79·2; H, 10·8%).

Band III—2 - methylene - 8,13 - epoxylabdan - 3α - ol 40 (0.04 g) m.p. 93–94°, sublimed 80°/0.03 mm; $\nu_{max}^{\rm CCL}$ 3620 (non-bonded OH) 3450 (bonded OH); 3080, 1650, 900 (C=CH₂); 1120, 1075 (C=O) cm ⁻¹; PMR: Me's at δ 0.71, 0.75, 1.00, 1.20, 1.27, 0.85 (t, J 7 Hz); -C HOH 3.61 (s); C=CH₂ 4.82, 4.97. (Found: C, 78.7; H, 11.4. C₂₁H₃₆O₂ requires: C, 78.8; H, 11.3%).

Band IV—2 - hydroxymethyl - 8,13 - epoxylabd - 2 - ene 47 (0·35 g) m.p. 116–118°, sublimed 100°/0·03 mm; ν_{max} 3400 (OH); 1120, 1080 (C–O) cm ⁻¹; PMR: Me's at δ 0·76, 0·87, 0·97, 1·20, 1·30, 0·85 (tr, J 7 Hz); CH₂OH as A₂ system 3·94; C=CH 5·37 (W/2 4 Hz due to long-range coupling with 1 α -H). (Found: C, 78·9; H, 11·6. C₂; H₃₆O₂ requires: C, 78·8; H, 11·3%).

Band V— 2β - hydroxymethyl - 2α , 3α ; 8, 13 - diepoxylabdane **49** (0·3 g) m.p. 127–128°, sublimed 115°/0·03 mm; ν_{max} 3400 (OH); 1120, 1080 (C–O); 915, 810 (epoxide) cm⁻¹; PMR: Me's at δ 0·77,

0.98, 1.09, 1.18, 1.25, 0.82 (tr, J 7 Hz); H = C - C 2.91 (s), $-CH_2OH$ as AB system H_A 3.63, H_B 3.52 (J_{AB} 13 Hz). (Found: C, 75.1; H, 10.8. $C_{21}H_{36}O_3$ requires: C, 75.0; H, 10.7%).

 3α - Acetoxy - 2 - methylene - 8,13 - epoxylabdane (41). The alcohol 40 (40 mg) in Ac₂O/pyridine (3 ml; 1:1) was left at r.t. for 24 hr. Work up as for 11 gave, after PLC (15% ether/hexane), 3α - acetoxy - 2 - methylene - 8,13 - epoxylabdane 41 (40 mg) as an oil b.p. 90°/0·01 mm; ν_{max} 1745, 1230 (OCOCH₃); 3080, 1655, 905

(C=CH₂); 1120, 1075, 1030 (C-O) cm⁻¹; PMR: Me's at δ 0·71, 0·79, 0·89, 1·19, 1·27, 0·87 (tr, J 7 Hz); OCOCH₃ 2·05; C=CH₂ 4·91; -CHOAc 5·12 (d, J 3 Hz, long range coupling with 1αH). (Found: C, 76·5; H, 10·7. C₂₃H₃₆O₃ requires: C, 76·2; H, 10·5%).

 3α - Acetoxy - 8,13 - epoxylabdan - 2 - one (43). The acetate 41 (40 mg) in pyridine (2 ml) was treated with OsO₄ (50 mg) in pyridine (2 ml) and the mixture allowed to stand at r.t. for 24 hr NaIO₄ (10 ml; 3%) was added and stirring continued for a further 24 hr. Dilution and ether extraction gave 3α - acetoxy - 8,13 - epoxylabdan - 2 - one 43 (20 mg) m.p. 69·5-70·5° (aqueous MeOH); ν_{max} 1752, 1230 (OCOCH₃); 1730 (C=O) cm⁻¹; PMR: Me's at δ 0.97, 0.98, 0.98, 1.20, 1.30, 0.86 (tr, J7 Hz); OCOCH₃ 2·15; C-1 methylene as AB system H_A 2·35, H_B 2·25 (I_{AB} 12 Hz); -CHOAc 4·97 (s). (Found: C, 72·2; H, 10·0·C $C_{22}H_{36}O_4$ requires: C, 72·5; H, 10·0%).

Epoxidation of 2 - hydroxymethyl - 8,13 - epoxylabd - 2 - ene (47). Compound 47 (20 mg) in CHCl₁ (10 ml) was stirred at r.t. with excess m-chloroperbenzoic acid in CHCl₃ (5 ml) for 20 hr. Washing with water and treatment with 10% Na₂S₂O₃ aq gave after PLC (25% ether/hexane) 2β - hydroxymethyl - 2α , 3α ; 8,13 - diepoxylabdane (49) identical to the product from the SeO₂/H₂O₂ oxidation.

Lithium aluminium hydride reduction of 2β - hydroxymethyl - 2α , 3α ; 8, 13 - diepoxylabdane (49). The epoxide 49 (60 mg) in dry ether (20 ml) was refluxed with excess LAH for 2 hr. Excess LAH was destroyed with wet ether and then water. The complex was hydrolysed with H_2SO_4 (10 ml, 10%) and the mixture ether extracted. PLC (20% ether/hexane) gave 2β - hydroxymethyl - 8, 13 - epoxylabdan - 2α - ol 50 (50 mg) as an oil (distilled $130^\circ/0.3$ mm); ν_{max} 3400 (OH): 1118, 1065 (C-O) cm⁻¹; PMR: Me's at δ 0.82, 0.86, 1.12, 1.18, 1.27, 0.83 (tr. J 7 Hz); -C H_2 OH as A_2 system, 3.34. (Found: C, 74.2; H, 11.6. $C_{21}H_{30}O_3$ requires: C, 74.5; H, 11.3%).

Cleavage of 2β - hydroxymethyl - 8,13 - epoxylabdan - 2α - of (50). To diol 50 (40 mg) in CHCl₃/HOAc (5 ml, 1:1) was added excess Pb(OAc)₄. After stirring for 5 hr at r.t. excess Pb(OAc)₄ was destroyed by the addition of ethylene glycol. Work up by filtration and evaporation of the solvent gave 8,13 - epoxylabdan - 2 - one 39 (30 mg) identical with an authentic sample (m.m.p., IR, NMR).

Selenium dioxide on 8(17),14 - labdadien - 13 - ol (18)

Compound 18 (0.5 g) in dioxan (20 ml) was refluxed with SeO₂ (0.15 g) and water (1.5 ml) for 2.5 hr by which time all the starting material had reacted (TLC). PLC (70% ether/hexane) of the product gave 8(17),14 - labdadiene - $7\alpha,13$ - diol 19 (0.27 g) identical (m.m.p., PMR, IR) with an authentic sample. TLC examination of the crude product shown none of the other products isolated from the corresponding SeO₂/H₂O₂ oxidation.

Selenium dioxide/hydrogen peroxide on 8,13 - epoxylabd - 2 - ene (52)

A soln of 52 (400 mg) in dioxan (20 ml) with H_2O_2 (3 ml; 30%)

and SeO₂ (0·2 g) was stirred at r.t. for 48 hr. PLC (10% ether/hexane) gave unchanged 52 (80 mg) and 2α , 3α ; 8,13 - diepoxy - labdane 53 (280 mg), identical with an authentic sample (m.m.p., IR, PMR).

Selenium dioxide on 8,13 - epoxylabd - 2 - ene (52)

- (a) A soln of 52 (300 mg) and SeO₂ (600 mg) in dioxan (30 ml) and water (2·0 ml) was refluxed for 10 hr. PLC (70% ether/hexane) of the product gave 8,13 epoxylabd 2 en 1 α ol 54 (220 mg) m.p. 54-55°, sublimed 50°/0·03 mm; $\nu_{\rm max}$ 3430 (OH); 1659 (C=C) cm⁻¹; PMR: Me's at δ 0·87, 0·87, 0·99, 1·20, 1·31, 0·85 (tr, J 7 Hz); CḤ=CḤ-CḤOH as ABX system H_A 5·71, H_B 5·53, H_X 3·65 (J_{AB} 10 Hz, J_{BX} 5 Hz). (Found: C, 78·2; H, 11·1. C₂₀H_{3*}O₃ requires: C, 78·5; H, 11·1%).
- (b) A soln of 52 (0·20 g) in dioxan (10 ml) with H_2O (1·5 ml) was stirred at r.t. for 120 hr and gave unchanged starting material (0·19 g) on workup.

Acknowledgements—We are grateful for scholarships from U.E.B. Industries Ltd., (M.J.F.) and the New Zealand Colombo Plan (K.S.L.) and to the Research Committee of the New Zealand Universities Grants Committee for grants and a fellowship R.T.W.). We thank Dr Scopes for C.D. data.

REFERENCES

- ¹Part V, P. K. Grant, H. T. L. Liau and K. S. Low, Aust. J. Chem. 28, 903 (1975).
- ²A. Guillemonat, Ann. Chim. Paris, 11, 143 (1939).
- ³E. N. Tratchenberg, C. H. Nelson and J. R. Carver, J. Org. Chem. 35, 1653 (1970).
- ⁴M. Mudgan and D. P. Young, J. Chem. Soc. 2988 (1949).
- ⁵J. Itakura, H. Tanaka and H. Ito, Bull. Chem. Soc. Japan 42, 1608 (1969).
- ⁶L. F. Fieser and M. Fieser, Reagents for Organic Synthesis, Vol. 2, p. 362. Wiley, New York (1969).
- ⁷K. Tori, T. Komeno and T. Nakagawa, *J. Org. Chem.* 29, 1136 (1964).
- ⁸A. Gaudemer, J. Polonsky and E. Wenkert, Bull. Soc. Chim. Fr, 407 (1964).
- ^oN. S. Bhacca and D. H. Williams, Applications of NMR Spectroscopy in Organic Chemistry, p. 19. Holden Day, San Francisco (1964).
- ¹⁰W. M. Moffitt, R. B. Woodward, A. Muskovitz, W. Klyne and C. Djerassi, J. Am. Chem. Soc. 83, 4013 (1961).
- ¹¹P. K. Grant, C. Huntrakul and R. T. Weavers, Aust. J. Chem. 25, 365 (1972).
- ¹²R. C. Cambie, P. K. Grant, C. Huntrakul and R. J. Weston, *Ibid.* 22, 1691 (1969).
- P. K. Grant and R. T. Weavers, *Tetrahedron* 30, 2385 (1974).
 M. J. A. McGrath, *M.Sc. Thesis*, University of Otago, p. 59 (1963).
- 15 Idem., Ph.D. Thesis, University of Otago, p. 61 (1968).
- ¹⁶P. K. Grant and R. T. Weavers, Tetrahedron 29, 245 (1972).